Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Emerg Microbes Infect ; 10(1): 810-821, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1180458

ABSTRACT

EK1 peptide is a membrane fusion inhibitor with broad-spectrum activity against human coronaviruses (CoVs). In the outbreak of COVID-19, we generated a lipopeptide EK1V1 by modifying EK1 with cholesterol, which exhibited significantly improved antiviral activity. In this study, we surprisingly found that EK1V1 also displayed potent cross-inhibitory activities against divergent HIV-1, HIV-2, and simian immunodeficiency virus (SIV) isolates. Consistently, the recently reported EK1 derivative EK1C4 and SARS-CoV-2 derived fusion inhibitor lipopeptides (IPB02 ∼ IPB09) also inhibited HIV-1 Env-mediated cell-cell fusion and infection efficiently. In the inhibition of a panel of HIV-1 mutants resistant to HIV-1 fusion inhibitors, EK1V1 and IPB02-based inhibitors exhibited significantly decreased or increased activities, suggesting the heptad repeat-1 region (HR1) of HIV-1 gp41 being their target. Furthermore, the sequence alignment and molecular docking analyses verified the target site and revealed the mechanism underlying the resistance. Combined, we conclude that this serendipitous discovery provides a proof-of-concept for a common mechanism of viral fusion and critical information for the development of broad-spectrum antivirals.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , HIV-1/drug effects , HIV-2/drug effects , Simian Immunodeficiency Virus/drug effects , Virus Internalization/drug effects , Amino Acid Sequence , Animals , Antiviral Agents/isolation & purification , Dose-Response Relationship, Drug , HIV Fusion Inhibitors/isolation & purification , HIV Fusion Inhibitors/pharmacology , Humans , Lipopeptides/isolation & purification , Lipopeptides/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Fragments/isolation & purification , Peptide Fragments/pharmacology , SARS-CoV-2/drug effects , Structure-Activity Relationship , Virus Replication/drug effects
2.
Sci Adv ; 6(45)2020 11.
Article in English | MEDLINE | ID: covidwho-842149

ABSTRACT

The current coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus genetically close to SARS-CoV. To investigate the effects of previous SARS-CoV infection on the ability to recognize and neutralize SARS-CoV-2, we analyzed 20 convalescent serum samples collected from individuals infected with SARS-CoV during the 2003 SARS outbreak. All patient sera reacted strongly with the S1 subunit and receptor binding domain (RBD) of SARS-CoV; cross-reacted with the S ectodomain, S1, RBD, and S2 proteins of SARS-CoV-2; and neutralized both SARS-CoV and SARS-CoV-2 S protein-driven infections. Analysis of antisera from mice and rabbits immunized with a full-length S and RBD immunogens of SARS-CoV verified cross-reactive neutralization against SARS-CoV-2. A SARS-CoV-derived RBD from palm civets elicited more potent cross-neutralizing responses in immunized animals than the RBD from a human SARS-CoV strain, informing strategies for development of universal vaccines against emerging coronaviruses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunization/methods , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/virology , COVID-19 Vaccines/immunology , Cross Reactions , Follow-Up Studies , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Neutralization Tests , Rabbits , Severe Acute Respiratory Syndrome/blood , Severe Acute Respiratory Syndrome/virology
3.
J Sleep Res ; 30(1): e13142, 2021 02.
Article in English | MEDLINE | ID: covidwho-676388

ABSTRACT

Coronavirus disease 2019 (COVID-19) has resulted in a significantly large number of psychological consequences, including sleep health. The present study evaluated sleep patterns, sleep disturbances, and associated factors in Chinese preschoolers confined at home during the COVID-19 outbreak. Caregivers of 1619 preschoolers (aged 4-6 years) recruited from 11 preschools in Zunyi, Guizhou province completed the Children's Sleep Habit Questionnaire (CSHQ) between 17th and 19th February 2020. Data were compared to a sociodemographically similar sample of preschoolers (included in the 11 preschools) in 2018. Compared to the 2018 sample, the confined preschoolers demonstrated changes in sleep patterns characterized by later bedtimes and wake times, longer nocturnal and shorter nap sleep durations, comparable 24-hr sleep duration, and fewer caregiver-reported sleep disturbances. Moreover, behavioural practices (sleeping arrangement, reduced electronic device use, regular diet) and parenting practices (harmonious family atmosphere and increased parent-child communication) were associated with less sleep disturbances in the confined sample. The present study provides the first description of the impact of prolonged home confinement during the COVID-19 outbreak on sleep patterns and sleep disturbances in preschoolers, as well as highlighting the importance of the link between sleep health and family factors. Given that disrupted and insufficient sleep has been linked to immune system dysfunction, our findings also have potential implications for resilience to infection in young children during the COVID-19 pandemic. Future studies should further explore deficient sleep as a risk factor for coronavirus infection.


Subject(s)
COVID-19/epidemiology , Sleep/physiology , Child , Child, Preschool , Disease Outbreaks , Family Health/statistics & numerical data , Female , Humans , Male , Pandemics , Parent-Child Relations , Parenting/psychology , Polysomnography , Risk Factors , Sleep Deprivation/epidemiology , Sleep Hygiene/physiology , Surveys and Questionnaires
4.
J Virol ; 94(14)2020 07 01.
Article in English | MEDLINE | ID: covidwho-197345

ABSTRACT

The 2019 coronavirus disease (COVID-19), caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed serious threats to global public health and economic and social stabilities, calling for the prompt development of therapeutics and prophylactics. In this study, we first verified that SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as a cell receptor and that its spike (S) protein mediates high membrane fusion activity. The heptad repeat 1 (HR1) sequence in the S2 fusion protein of SARS-CoV-2 possesses markedly increased α-helicity and thermostability, as well as a higher binding affinity with its corresponding heptad repeat 2 (HR2) site, than the HR1 sequence in S2 of severe acute respiratory syndrome coronavirus (SARS-CoV). Then, we designed an HR2 sequence-based lipopeptide fusion inhibitor, termed IPB02, which showed highly potent activities in inhibiting SARS-CoV-2 S protein-mediated cell-cell fusion and pseudovirus transduction. IPB02 also inhibited the SARS-CoV pseudovirus efficiently. Moreover, the structure-activity relationship (SAR) of IPB02 was characterized with a panel of truncated lipopeptides, revealing the amino acid motifs critical for its binding and antiviral capacities. Therefore, the results presented here provide important information for understanding the entry pathway of SARS-CoV-2 and the design of antivirals that target the membrane fusion step.IMPORTANCE The COVID-19 pandemic, caused by SARS-CoV-2, presents a serious global public health emergency in urgent need of prophylactic and therapeutic interventions. The S protein of coronaviruses mediates viral receptor binding and membrane fusion, thus being considered a critical target for antivirals. Herein, we report that the SARS-CoV-2 S protein has evolved a high level of activity to mediate cell-cell fusion, significantly differing from the S protein of SARS-CoV that emerged previously. The HR1 sequence in the fusion protein of SARS-CoV-2 adopts a much higher helical stability than the HR1 sequence in the fusion protein of SARS-CoV and can interact with the HR2 site to form a six-helical bundle structure more efficiently, underlying the mechanism of the enhanced fusion capacity. Also, importantly, the design of membrane fusion inhibitors with high potencies against both SARS-CoV-2 and SARS-CoV has provided potential arsenals to combat the pandemic and tools to exploit the fusion mechanism.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Lipopeptides/pharmacology , Membrane Fusion/drug effects , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Betacoronavirus/physiology , COVID-19 , Drug Design , HEK293 Cells , Humans , Lipopeptides/chemistry , Membrane Glycoproteins/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL